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Abstract— Dominant Pruning (DP) is a distributed connected
dominating-set algorithm that can be used for reducing the
impact of flooding in wireless ad hoc networks. We propose an
enhanced dominant pruning (EDP) approach to be used in the
route discovery process of on-demand routing protocols. To show
the benefits of EDP, we integrate EDP into the Ad-hoc On-demand
Distance Vector (AODV) protocol. We present detailed simulation
results showing that our approach improves standard AODV
in most aspects, and that it is simple and easy to implement.
Our approach is compared against AODV and OLSR, as good
representatives of on-demand and proactive routing for ad-hoc
wireless networks.

I. INTRODUCTION

On-demand route discovery is based on route request
(RREQ) and route reply (RREP) messages (e.g., AODV [1]
and DSR [2]). The way in which these messages are handled
may differ among different protocols, but their functionality
remains the same: a request is relayed until it reaches a node
with a valid route to the destination or the destination itself,
which triggers a reply message sent back to the originator.
Several parameters (such as how long to keep requests in a
cache, timeouts for requests, timeouts for hellos, and the like)
are subject to tunning, and the choices made may result in
improvements in the protocol performance. However, RREQs
are propagated using either an unrestricted broadcast or an
expanding ring search [3]. In either case, the resulting flooding
operation causes considerable collisions of packets in wireless
networks using contention-based channel access.

A connected dominating set (CDS) is a set of nodes such
that every node in the network is either in the set or is the
neighbor of a node in the set. The problem of determining
the minimum connected dominating set (MCDS) is known to
be NP-complete. Extensive work has been done on finding a
good approximation of MCDS in terms of small approximation
ratio. A protocol with a constant approximation ratio of eight
has been proposed by Wan et. al. [4]. However, their approach
requires that a spanning tree be constructed first in order to
select the dominating nodes (forwarders), and only after that
a broadcast can be performed. To improve the route discovery
process we need an approach that is suitable for dynamic
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networks with mobile nodes, and is based on determining the
CDS in real time.

Lim and Kim [5] show that the MCDS problem can be
reduced to the problem of building a minimum cost flooding
tree (MCFT). Given that an optimal solution for the MCFT
problem is not feasible, they propose heuristics for flooding
trees, resulting in two algorithms: self-pruning and dominant
pruning (DP). They show that both algorithms perform better
than blind flooding, with which each node broadcasts a packet
to its neighbors whenever it receives the packet along the
shortest path from the source node, and that DP outperforms
self-pruning. Section II provides more details on DP, shows
an error in the original algorithm by Lim and Kim [5] and the
way to fix it.

Enhancements to dominant pruning have been reported by
Lou and Wu [6], who describe the total dominant pruning
(TDP) algorithm and the partial dominant pruning (PDP)
algorithm. TDP requires that the two-hop neighborhood of
the sender be piggybacked in the header of the packet. This
information reduces the size of the two-hop neighbor set
that needs to be covered by the forwarders. The header size
increases proportionally to the number of nodes in the two-
hop neighborhood, which may become a problem in dense or
large networks. PDP enhances DP by eliminating the two-hop
nodes advertised by a neighbor shared by both the sender and
the receiver (forwarder). Simulation results assuming an ideal
MAC layer with which no contention or collisions occur show
that both TDP and PDP improve DP in a static environment.
A dynamic scenario is also evaluated, and DP is shown to
perform better than both TDP and PDP.

We propose modifications to DP together with some heuris-
tics that improve its performance. These heuristics help to
further reduce the number of broadcast messages at the ex-
pense of having to attach more information in the header of
the control packets. We call our proposal Enhanced Dominant
Pruning (EDP), which is described in Section III. EDP can
be applied to any on-demand routing protocol that relies on
broadcasting control packets when searching for a route to
a given destination. To show the applicability of EDP to
an existing protocol, we have implemented EDP in AODV.
Nodes use hello messages to disseminate their valid one-hop
neighbors for building the two-hop neighborhood, which is
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the minimum requirement for the connected dominating set
algorithm under consideration.

The Optimized Link State Routing (OLSR) [7] [8] is closely
related to our work, because it uses a similar mechanism
for reducing duplicate control traffic retransmissions. Each
node

�
in the network selects a set of nodes among its

symmetrical one-hop neighbors, which are then responsible for
retransmitting its packets. This set of nodes is called multipoint
relays (MPR). Nodes that are not in the MPR set of

�
do

not retransmit the packets received from
�

. Our approach
differs from OLSR in the way the forwarders are chosen, as
well as the heuristics used for prunning redundant relayers.
Nevertheless, in spite of OLSR being a proactive routing
protocol, it would be possible to substitute the MPR approach
with ours. The impact of such modifications is the subject of
another publication.

Section IV presents detailed simulations to show the benefits
of EDP when it is applied to AODV and compares it against
OLSR, AODV with and without hellos, and AODV with DP.
The simulation results clearly show that AODV with EDP ren-
ders the best performance of all the AODV versions, and much
better packet delivery ratios and end-to-end delays than OLSR,
which is a direct consequence of reducing packet collisions
due to RREQs by means of EDP. Section V concludes this
work.

II. DOMINANT PRUNING REVIEW

We use a simple graph, �������	��
� , to represent an ad hoc
wireless network, where � represents a set of wireless mobile
hosts (nodes) and 
 represents a set of edges (links). The
network is seen as a unit disk graph [9], i.e., the nodes within
the circle around node � (corresponding to its radio range) are
considered its neighbors.

In dominant pruning (DP) [5] the sending node decides
which adjacent nodes should relay the packet. The relaying
nodes are selected using a distributed CDS algorithm, and the
identifiers (IDs) of the selected nodes are piggybacked in the
packet as the forwarder list. A receiving node that is requested
to forward the packet again determines the forwarder list. The
flooding ends when there is no more relaying nodes.

Nodes keep information about their two-hop neighborhood,
which can be obtained by the nodes exchanging their adjacent
node list with their neighbors. DP is a distributed algorithm
that determines a set cover based on the partial knowledge of
the two-hop neighborhood. Ideally, the number of forwarding
nodes should be minimized to decrease the number of trans-
missions. However, the optimal solution is NP-complete and
requires that nodes know the entire topology of the network.
DP uses the greedy set cover (GSC) algorithm to determine the
forwarder list of a packet (i.e., the list of nodes that should
forward the packet) based just on partial knowledge of the
network topology. GSC recursively chooses one-hop neighbors
that cover the most two-hop neighbors, repeating the process
until all two-hop neighbors are covered.

The set of nodes within two-hops from node ��� is denoted
by
� �� , and the set of one-hop neighbors of node ��� is denoted

by
� �� . If node ��� is the source of the broadcast, it determines

its forwarder list so that all nodes in �	��� � ���� � �� receive
the packet. The set of forwarder nodes is denoted by � ��	� ���� � � � � �! " # "� �%$'&)( � �� , such that *,+.-0/2143576 � � +�-�98 � � �:�;� � .
A forwarder node �=<?>@� ��A� determines its own forwarder
list upon receiving the broadcast. Node �B< does not need to
cover the neighbors of node ��� (i.e.,

� �� ), because they were
already covered by the previous broadcast. In this case, �C<D�� <� � � <� � � �� is the set to be covered. The set � <�	�4EGF � <�
is the temporary set cover of node � < . Our solution includes
the set of one-hop neighbors shared by nodes ��� and �=< (i.e.,� <� 8 � �� ), in the first part of the computation of the forwarder
list. The final forwarder list is defined as � <�A� �H� <�A�4E � � ��A� .

The solution presented by Lim and Kim [5] is incorrect,
because only nodes in the subset

� <� � � �� are considered
for the computation of the forwarder list, which can lead to
incorrect results for particular topologies. The reason is simple,
nodes being shared by the source and the receiver are still
candidates as forwarder nodes, because node �4< may have
two-hop nodes exclusively advertised by some shared node.
Because a node knows the sender’s forwarder list, it can get
rid of those nodes that were previously chosen as forwarder
nodes by the sender. It turns out that the resulting forwarder
list described in [5] is in fact in the subset

� <� � � �� .
Figure 1 shows an example where DP as proposed in [5]

fails. Consider node I as the source of the broadcast. Node
I selects nodes J and K as the forwarder nodes. Note that
�CLM� � �G�N�O��P & , but there is no node in the set

��Q ��
 & (i.e.,� L� � �SR� ) that can cover the set
� �G��� & . The same can be

said for �AT@� �UQ �N
V�XW & , where there is no node in the set� �G�N� & (i.e.,
� T�H� �YR� ) that can cover the set

�UQ �N
 & .
Our solution guarantees that nodes in

�ZR� 8 � L� take part
in the selection of the forwarder nodes of J , and that nodes in�SR� 8 � T� take part in the selection of the forwarder nodes of
K . It is just a matter of consistency, even though some nodes
in � L�A� E and in � T�A� E are ruled out of the resulting forwarder
list when they were already in the sender’s forwarder list.
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Fig. 1. Example where original DP fails (node q is the source). Modified DP
determines the correct set of forwarding nodes: A selects B and C as forwarder
nodes; B chooses D and C as forwarder nodes, but dismiss C because it is in
the sender’s forwarder list; C chooses F and B, but dismiss B because it is in
the sender’s forwarder list.



III. ENHANCED DOMINANT PRUNING

The objective of Enhanced Dominant Pruning (EDP) is to
reduce the number of broadcast packets necessary to flood
the network with the same guarantees provided by DP (after
applying the modifications cited previously). In the following,
we assume that a neighbor protocol is available to provide the
two-hop neighborhood information.

The EDP forwarder list as determined by node ��� is denoted
by rD� . We use the term EDP forwarder list to emphasize that
the resulting list might be different from the one obtained by
simply running DP (i.e., � ��A� ) over �A� . The current node is
denoted by � � , and the node that sent the packet is denoted
by s (if the current node is the source of the broadcast, then
st�vu ). The sender’s forwarder list is denoted by r�w , and
the second-to-previous forwarder list is denoted by r:w�x . rDw:�
u if � � is the source of the broadcast. In a similar manner,
r w x���u if �4� is the source of the broadcast or if the sender
s is the source. The packet header must specify the forwarder
list and the sender’s forwarder list (the sender s of the packet
is obtained from the packet header), but that should not be a
problem given that both lists are expected to be small, because
GSC is applied to the two-hop neighborhood.

Algorithm 1 shows the pseudo-code for determining the
EDP forwarder list ry� . Let z be the set of neighbors of
node �4� that are also in the sender’s forwarder list r w . Let{
| -U/%}

�Y~� be the set of nodes adjacent to neighbors that are

also in the sender’s forwarder list. These nodes do not need to
be considered when running DP, because they are guaranteed
to be covered by some other forwarder node. Let � be the
set of nodes in r w with identifiers larger than node ��� . The
set of forwarder nodes of ��� that are reachable through other
forwarder node in the sender’s list (i.e., there is a disjoint
two-hop path to node � ~ through another node in r w with a
higher priority) is denoted by � . The set of neighbors that
are already covered by nodes in r�w x (the second-to-previous
forwarder node) is denoted by � .

As in DP, a forwarding node does not need to include in
its forwarder list those neighbors that are also neighbors of
the sender s (i.e.,

� �� 8 � w� ). Because the sender s already
sent the packet to all its neighbors, all the common neighbors
between the sender and the receiver can be excluded from the
forwarder list. Neighbors that are also in the sender’s forwarder
list r w (line 1) can have their one-hop nodes removed from
�C� (lines 2 through 4). Then DP is run on this reduced set,
denoted by � ��A� (line 5).

A node in � ��A� that is covered by at least one more node in
r w needs to be covered by just one of these nodes. To select
one, we use node identifiers as priorities, and the node with
the largest ID wins. Lines 7 through 9 present the pseudo-code
that creates the set � , which contains the nodes in r�w with
identifiers larger than the local node � � . The set � F � ��A� has
the forwarder nodes that are reachable through another node
in the sender’s forwarder list (lines 10 through 14). That is,
there is a disjoint two-hop path to node � ~ >�� ��A� through
another node in r w with a higher priority. Therefore, a node

Algorithm 1: Enhanced Dominant Pruning

Data : �7� , �A� , �A��x , �B�
Result : �	� , the forwarder list
begin

1 ����Z� ���� �A�
2 � ���� ��?� �
3 for �e���,� do
4 � ���� ��m� ���� �l� ��
5 � ���� �'���_����� ������
6 �l��Z�
7 for �e���,�A� do
8 if �e���Y�e� then
9 �n�� ��¡�¢X� ��£

10 ¤¥��Z�
11 for �e���V� ���� do
12 for �e¦§�_� do
13 if �7¦§�V� �� then
14 ¤¥��Y¤¨¡©¢ª� ��£
15 «m��Z�
16 for �e���V� �� do
17 for �e¦§�V� �� do
18 if � ¦ �,� � x then
19 «m�'�¬« ¡ ¢X�e� £
20 �	�=�'��� ���� �?«��)¤�� �A�C���A��x

end

in the set � can be excluded from the forwarder list.

A neighbor � ~ that was previously chosen as a forwarder
node by the second to previous node (i.e., � ~ >rDw x ), and
neighbors covered by a node in r�w x , can be removed from
the forwarder list (lines 15 through 19). A neighbor � ~ is
covered by some node �4®�>lrDwNx if �B®�> � ~� . Finally, the EDP
forwarder list r � is updated on line 20.

Consider the example shown in Figure 2. Node I selects
nodes

� J)� Q �N� & for its forwarder list. Node
Q

selects nodes� 
���� & as forwarders, because 
 is the only neighbor covering
node K , and node � , because it is the only neighbor covering
nodes

� Pn�!W & . Node � can be removed from
Q

’s forwarder
list, because node � is covered by another forwarder node with
a higher priority (i.e., node �¯>nr R , and ° Q �g�'�a±�° Q � Q � ).
On the other hand, node � selects node � as its forwarder
node, because node � wins over node

Q
. Node � selects nodeQ

as its forwarder, because
Q

is the only neighbor covering
node 
 , but node

Q
can be dismissed because node

Q
is in

the second to previous forwarder list (i.e.,
Q >�r w x�¯r R ).

Node J selects node K as its forwarder, because node K is
the only neighbor to cover node 
 . Node K determines 
 as a
forwarder node, because 
 is the only neighbor covering nodeQ

. Node K does not need to include node 
 in the forwarder
list, because node 
 is covered by a node in r R . The same
happens at node 
 , which selects node K as a forwarder node
but it is not necessary to include node K in the forwarder list,
because node K is covered by node J . It is important to note



that, in order to exclude a neighbor from the forwarder list,
it suffices that the node is covered by other node in r w x . It
is not a requirement that the excluded node be chosen as a
forwarder node by the node covering it.
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Fig. 2. Node q is the source. The knowledge about the second to previous
forwarder list ( Î�Ï ) allows nodes Ð and Ñ to exclude each other from their
forwarder list, and node Ò to exclude node Ó . Node Ó reduces the size of
its forwarder list by using the information provided by the set Ô .

Consider the example illustrated in Figure 3. Node I is
the source of the broadcast. Nodes J and K are chosen as
forwarders. Node J does not need to cover nodes � and �
because they are adjacent to other node (i.e., node K ) in the
sender’s forwarder list. Given that, node J determines node

Q
as its forwarder node, which in turn determines node 
 as its
forwarder node. Nevertheless,

Q
does not need to forward the

packet to node 
 because it is covered by a previous forwarder
node (i.e., node J chosen as forwarder node by node I ), and
node 
 is adjacent to both node

Q
and the sender J . In

a similar manner, node K does not need to cover nodes
Q

and 
 , because they are adjacent to node J that is in the
sender’s forwarder list. K determines node � as its forwarder
node, which in turn determines node 
 as a forwarder node.
Node � does not need to include node 
 because this node
is covered by a previous forwarder node (i.e., node J that is
in I ’s forwarder list).
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Fig. 3. Node q is the source. Nodes ÚÙÛcÑ�ÛÉÓ�Û�Ü are the only nodes chosen
as forwarders for this network.

Theorem 1 Given a graph �V���	��
� , let Ý �	� be a CDS of
� when applying the algorithm DP, and Ý�Þ �A� a CDS of �

when applying the algorithm EDP. Then Ý�Þ �A� is equivalent
to Ý �	� .

Proof: Nodes in the set rywNx and the set rDw can be ex-
cluded without any implication besides reducing redundancy.
Nodes in � were already covered by some other forwarders
in r w x , therefore they can be omitted. A node � ~ > � can be
disregarded because node � ~ is covered by some other node
�4ß in the set � (nodes with higher priority), i.e., all nodes
in
� ~� are also in

� ß� , or � ~ >�rDß when there is a node
�4à exclusively covered by � ~ (i.e. �4àá> � ~� and �4à is not a
neighbor of any other node in

� ß� ). Hence, all nodes covered
by Ý �A� are also covered by Ý4Þ �	� .

A. Applying EDP to the Route Discovery Process of AODV

This section addresses the application of EDP to the route
discovery process in AODV (AODV-EDP). Our neighbor
protocol uses hello packets to disseminate the one-hop neigh-
borhood, which creates a picture of its two-hop neighborhood
at any given node in the network. A hello packet advertises
the node’s sequence number (mySeqNum), the identification
of its known neighbors (neighbors[]), and the corresponding
neighbors’ sequence number (neighSeqNum[]). We have cho-
sen a hello interval of â2 äã2å . To reduce the number of broadcast
messages, RREQ also advertise the one-hop neighborhood in-
formation, working as a hello message. This event reschedules
any pending hello message.

To avoid pruning too many route requests in the presence of
mobility and cross-traffic, we have chosen to implement the
neighbor protocol as part of AODV. We extended the hello
mechanism available in AODV to include the information
about the one-hop neighborhood in hello messages, and we
also rely on the AODV mechanisms for evaluating the link
status to neighbors.

A route request (RREQ) works in a similar way as in AODV.
The main difference being that only forwarders rebroadcast
a broadcast packet. The source of a RREQ calculates its
forwarder list using EDP, and broadcasts the packet. Upon
receiving a route request, a forwarder that cannot respond
to this request calculates its own forwarder list using the
information provided in the RREQ packet (i.e., forwarder
list, second to previous forwarder list, and source node) and
broadcast the packet after updating it with its own forwarder
list. Eventually the request reaches a node with a route to the
destination or the destination itself. It is expected that most of
the replies will come from an intermediate node because of
the two-hop neighborhood information.

Because of topology changes, nodes may not have correct
two-hop neighborhood information, which may result in for-
warding lists that do not cover all nodes in the neighborhood.
However, this is not a major problem, because a node in-
correctly excluded from the forwarder list also receives the
request and can respond in the case it has a route to the
destination.



IV. SIMULATIONS AND PERFORMANCE RESULTS

To compare AODV with EDP (AODV-EDP) against other
protocols, we use traffic and mobility models similar to those
previously reported in [10]. We implemented AODV-EDP in
Qualnet æp äã , and compare it against AODV-DP (AODV with
Dominant Pruning), AODV with no hello messages and withç å hello timers, and OLSR. We have chosen AODV and OLSR
because they represent some of the most referenced reactive
and proactive unicast routing protocols for wireless ad hoc
networks.

A. Simulation Parameters

The network is composed of ã%è nodes spread over an
area of âUã%è]è%éëê¬æ2è2è2é . The radio model used is a

ç2ì�ícî å
IEEE ï2è ç  "â2â device with a nominal transmission range ofç ï2è2é . Initially nodes are placed uniformly over a grid. Nodes
move according to the random waypoint model with velocities
between è and

ç è%éSð%å . Seven pause times are tested: è]å
(always moving), ã%èkå , âñè]è]å , æ2è2èkå , ã2è2è]å , ò0è2èkå , and ó2è]è]å .

For traffic sources we use æ2è source nodes transmittingô îeõÁö!÷pøñù å0ð2å of ãiâ ç bytes, making it a total of â ç è data packets
being injected into the network every second. Nodes begin
transmitting at ã2è]å plus an offset uniformly chosen over a ã]å
period to avoid synchronization in their initial transmission.
Source and destination pairs are chosen uniformly among
the nodes in the network. The simulation time is set to ó2è]è
seconds, and identical mobility and traffic scenarios are used
across protocols.

Experiments are repeated for 10 trials with different random
number seeds. Results present a ó]ãkú confidence interval. Each
data point represents the mean over the 10 runs discarding the
lowest and largest results (quantile of one).

Four performance metrics are evaluated:û Packet delivery ratio, the ratio of the data packets deliv-
ered to the destination to those generated by the CBR
sources.û Average end-to-end delay for data packets, including
all possible delays caused by route discovery latency,
queueing at the interface, retransmission delays at the
MAC layer, and propagation and transfer times.û Routing load, the number of routing packets transmitted
per data packet delivered to the destination, where each
hop traversed by the packet is counted as one transmis-
sion.û MAC collisions, the number of collisions detected at the
MAC layer.

B. Results

We show that AODV-EDP outperforms the other protocols
in most of the performance metrics. OLSR performs better
than AODV-EDP in terms of routing load and the number of
MAC collisions (a difference of about âUèkú less collisions).
However, we have to analyze these results together with the
other metrics.

Figure 4 shows the packet delivery ratio. AODV-EDP
presents an almost constant packet delivery ratio for all pause
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Fig. 4. Packet delivery ratio for 50 nodes and 30 flows (120 packets/s)

times. As the network becomes more static, the proactive
approach of OLSR starts to payoff and it performs better than
standard AODV, but AODV-EDP has a higher delivery ratio
for all the pause times. AODV-DP shows that DP alone can
improve AODV; however, it also shows that there is room for
more improvement (i.e., there is some more redundancy that
can be eliminated). OLSR performs better than AODV-DP for
large pause times (after ã%è]è]å pause time).

As pointed out in [10], the possibility of link failures is
low with low mobility, but due to the node movement model
(random waypoint) nodes usually get clustered. This situation
is responsible for congestion in those regions in the presence
of high traffic. This causes the link layer to report link failures
even though the nodes are relatively static and a physical link
still exists between the nodes. This is observed on Figure 4,
where we notice a decreasing on the packet delivery ratio for
some larger pause times.

Figure 5 shows the average end-to-end delay. AODV-EDP
presents an almost constant mean latency, and is always the
best for all pause times. Together with the packet delivery
ratio, these results show that besides delivering more packets
AODV-EDP delivers them faster than the other protocols.
AODV-DP again shows that DP alone improves AODV, but
OLSR is still better than AODV-DP for large pause times.
Clustering of nodes has a direct impact on the latency as well.
Packets spend more time waiting on the queues, and usually
need to be retransmitted due to increased congestion.

Figure 6 presents the routing load. As expected, AODV-EDP
has a lower routing load in comparison to standard AODV,
because it reduces the number of broadcast transmissions. As
expected, AODV-DP reduces the control overhead compared to
AODV, but not as much as AODV-EDP. OLSR has the lowest
routing load, but at the same time it gets a comparable delivery
ratio only when the network is more static. As mobility
increases, OLSR does not deliver as many packets as AODV-
EDP, and does not improve the end-to-end delay for any pause
time. In another words, less control overhead does not translate
in better performance for the upper layers.

Figure 7 shows the number of collisions at the MAC layer.
The number of colisions for standard AODV is noticeable
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larger than the other protocols, because a node always re-
sponds to the first received RREQ (if the TTL is valid, i.e.,
greater than zero). Because both AODV-EDP, AODV-DP, and
OLSR reduce the number of necessary broadcasts, it translates
in less collisions. OLSR produces slightly fewer collisions than
AODV-EDP. However, these results when interpreted together
with the packet delivery ratio and the end-to-end latency of
both protocols indicate that AODV-EDP incurs a few more
collisions because it delivers more packets.

Because the scenarios we have used to evaluate our ap-
proach differ from those presented in [6], and because we
implemented our solution together with a neighbor and routing
protocol, we do not know how our solution compares to TDP
and PDP. The relation between the savings of pruning (too
much, or too little) and the degree of broadcast redundancy
achieved, can be different, depending on the physical environ-
ment under consideration. If we take into account that more
packets being broadcasted translate into more contention and
collisions, we could have a different picture, depending on the
number of broadcasts that are avoided.

V. CONCLUSIONS

We presented an enhanced dominant prunning approach
that allows prunning redundant broadcasts even more than
the conventional dominant prunning heuristic. Because EDP
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requires the two-hop neighborhood to determine the forwarder
list, we built a neighbor protocol as part of AODV. By
making the neighbor protocol part of AODV, the result is a
more accurate view of the local topology, and therefore more
accurate is the determination of the forwarder list.

AODV-EDP improves the packet delivery ratio for all the
pause times tested in the ã%è nodes and æ2è flows scenario.
The other protocols (standard AODV and OLSR) deliver fewer
packets than AODV-EDP (the only exception is at ó]è2è]å when
OLSR has the same delivery ratio as AODV-EDP). The end-to-
end delay is much better in AODV-EDP, and is less than half
of the delays incurred by the other two protocols. The better
delivery ratio and lower latency do not come for free, and
AODV-EDP incurs more normalized routing load than OLSR,
but less than standard AODV. The reduction of broadcast
replicas by AODV-EDP and OLSR translates into a lower
number of collisions at the MAC layer.

REFERENCES

[1] C. Perkins, “Ad-hoc on-demand distance vector routing,” in Second IEEE
Workshop on Mobile Computing Systems and Applications, 1999.

[2] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc
wireless networks,” in Mobile Computing, Imielinski and Korth, Eds.
Kluwer Academic Publishers, 1996, vol. 353. [Online]. Available:
citeseer.nj.nec.com/johnson96dynamic.html

[3] A. Segall, “Distributed network protocols,” IEEE Transactions on Infor-
mation Theory, vol. 29, no. 1, pp. 23–35, Jan 1983.

[4] P.-J. Wan, K. M. Alzoubi, and O. Frieder, “Distributed construction of
connected dominating set in wireless ad hoc networks,” in Proceedings
of INFOCOM 2002, June 2002.

[5] H.Lim and C. Kim, “Flooding in wireless ad hoc networks,” Computer
Communications, vol. 24, february 2001.

[6] W. Lou and J. Wu, “On reducing broadcast redundancy in ad hoc
wireless networks,” IEEE Transactions on Mobile Computing, vol. 1,
no. 2, April-June 2002.

[7] T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, A. Qayyum, and
L. Viennot, “Optimized link state routing protocol for ad hoc networks,”
in Proceedings of the IEEE International Multi Topic Conference,
December 2001.

[8] ——, “Optimized link state routing protocol,” IETF Internet draft, draft-
ietf-manet-olsr-06.txt, Sep 2001.

[9] B. Clark, C. Colbourn, and D. Johnson, “Unit disk graphs,” Discrete
Math, vol. 86, pp. 165–177, 1990.

[10] C. Perkins, E. Royer, S. R. Das, and M. K. Marina, “Performance
comparison of two on-demand routing protocols for ad hoc networks,”
IEEE Personal Communications, vol. 8, no. 1, pp. 16–28, Feb 2001.


